конечно-ветвящийся - traducción al Inglés
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

конечно-ветвящийся - traducción al Inglés

Конечно-разностная схема

конечно-ветвящийся      
adj.
finitely branched, of finite branching
finitely branched      

общая лексика

конечно-ветвящийся

of finite branching      
конечно-ветвящийся (о процессе)

Definición

Сеток метод

собирательное название группы приближённых методов решения дифференциальных, интегральных и интегро-дифференциальных уравнений. Применительно к дифференциальным уравнениям с частными производными термин "С. м." используется в качестве синонима терминов "метод конечных разностей" и "разностный метод". С, м. - один из наиболее распространённых приближённых методов решения задач, связанных с дифференциальными уравнениями. Широкое применение С. м. объясняется его большой универсальностью и сравнительной простотой реализации на ЭВМ.

Суть С. м. состоит в следующем: область непрерывного изменения аргументов, в которой ищется решение уравнения, дополненного, если необходимо, краевыми и начальными условиями, заменяется дискретным множеством точек (узлов), называемым сеткой; вместо функций непрерывного аргумента рассматриваются функции дискретного аргумента, определяемые в узлах сетки и называемые сеточными функциями; производные, входящие в уравнение, краевые и начальные условия, аппроксимируются разностными отношениями; интегралы аппроксимируются квадратурными формулами; при этом исходное уравнение (задача) заменяется системой (линейных, если исходная задача была линейной) алгебраических уравнений (системой сеточных уравнений, а применительно к дифференциальным уравнениям - разностной схемой).

Если полученная таким образом система сеточных уравнений разрешима, по крайней мере, на достаточно мелкой сетке, т. е. сетке с густым расположением узлов, и её решение при неограниченном измельчании сетки приближается (сходится) к решению исходного уравнения (задачи), то полученное на любой фиксированной сетке решение и принимается за приближённое решение исходного уравнения (задачи).

Для одномерного теплопроводности уравнения (См. Теплопроводности уравнение)

, , , (1)

с начальным u (х, 0) = u0(x) и краевым условиями u (0, t) = μ1(t), u (1, t) = μ2(t) [предполагается, что u0(0) = μ1(0), u0(1) = μ2(0)] на прямоугольной равномерной сетке с узлами (xi = ih, tj = jτ), где i = 0, 1, 2,..., N, j = 0, 1, 2,..., h = 1/N и τ > 0 - шаги сетки, наиболее часто используемая разностная схема выглядит так (схема с весами):

(2)

где σ - некоторый параметр. Для двумерного Пуассона уравнения (См. Пуассона уравнение)

, , , (3)

с однородными краевыми условиями u (0, у) = u (х, 0) = u (1, у) = u (х, 1) = 0 на прямоугольной равномерной сетке с узлами xi1 = i1h1, yi2 = i2h2, где i1 = 0, 1,..., N1, i2 = 0, 1,..., N2, h1 = 1/N1, h2 = 1/N2, наиболее употребительной является разностная схема:

(4)

Для интегрального уравнения (См. Интегральные уравнения)

,

,

на равномерной сетке с узлами xi = ih, где i = 0, 1, 2,..., N, h = 1/N, простейшая система сеточных уравнении имеет вид:

,

Помимо указанных выше равномерных прямоугольных сеток, могут использоваться сетки более общего вида, например неравномерные, а для уравнения (3) и непрямоугольные. Сеточные уравнения на таких сетках выглядят более сложно. Если уравнение (3) решается в области, отличной от прямоугольника, то даже на равномерной прямоугольной сетке аппроксимация краевых условий становится менее очевидной.

При выборе той или иной сеточной аппроксимации большое значение имеет величина погрешности аппроксимации (п. а.). Так, для уравнений (2) п. а. есть величина O (τ + h2) при любом σ, O (τ2 + h2) при σ = 0.5 и O (τ2 + h 4) при σ = 0,5 - h2/12τ. Для схемы (4) п. а. есть величина O (h12 + h22). Наличие хорошей аппроксимации уравнений и краевых условий сеточными уравнениями ещё не гарантирует того, что решение системы сеточных уравнений будет в некотором смысле близко к решению исходной задачи. Нужно ещё, чтобы решение сеточных уравнений было устойчивым, т. е. непрерывно (равномерно непрерывно относительно выбора сетки) зависело от правой части и начальных и краевых данных. Только наличие хорошей аппроксимации и устойчивости гарантирует сходимость решений сеточных уравнений к решению исходного уравнения при неограниченном измельчании сетки. Отметим, что схема (2) устойчива при ; при σ = 0 получается явная схема, устойчивая при условии .

Системы сеточных уравнений представляют собой системы линейных алгебраических уравнений. Порядок системы будет тем выше, чем мельче сетка. Но точность приближённого решения зависит от величины шагов сетки, и она тем больше, чем меньше шаги. Поэтому получающиеся алгебраические системы обычно имеют довольно высокий порядок.

Лит.: Самарский А. А., Введение в теорию разностных схем, М., 1971; Годунов С. К., Рябенький В. С., Разностные схемы, М., 1973.

В. Б. Андреев, А. А. Самарский.

Wikipedia

Разностная схема

Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например, краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению, получаются применением разностного метода, что отличает теорию разностных схем от других численных методов решения дифференциальных задач (например проекционных методов, таких как метод Галёркина).

Решение разностной схемы называется приближенным решением дифференциальной задачи.

Хотя формальное определение не накладывает существенных ограничений на вид алгебраических уравнений, но на практике имеет смысл рассматривать только те схемы, которые каким-либо образом отвечают дифференциальной задаче. Важными понятиями теории разностных схем являются понятия сходимости, аппроксимации, устойчивости, консервативности.

¿Cómo se dice конечно-ветвящийся en Inglés? Traducción de &#39конечно-ветвящийся&#39 al Inglés